
Centrifugal Destabilization and Restabilization ofPlane Shear FlowsA. J. ConleyMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439May 25, 1995AbstractThe 
ow of an incompressible viscous 
uid between parallel platesbecomes unstable when the plates are tumbled. As the tumbling rateincreases, the 
ow restabilizes. This phenomenon is elucidated by path-following techniques. The solution of the Navier-Stokes equations is ap-proximated by spectral techniques. The linear stability of these solutionsis studied.1 IntroductionRecently, studies of plane Couette 
ow in the presence of a Coriolis forcehave led to the discovery of new solutions of the Navier{Stokes equations (see[Nagata, 1990] [Conley, 1994] [Conley & Keller, 1995]). One observation of thesestudies has been that, as the Coriolis force is increased, the parallel shear 
owbifurcates to a new solution that reconnects to the parallel 
ow at larger Coriolisforce. This paper is a description of similar phenomena in Poiseuille 
ow.1



Poiseuille 
ow is the inviscid, incompressible 
ow between in�nite, paral-lel, stationary plates (see Fig. 1). The addition of a Coriolis force causesplane Poiseuille 
ow to become unstable. The solutions that bifurcate fromplane Poiseuille 
ow are stable and, at larger Coriolis force, reconnect to planePoiseuille 
ow. Thus the Coriolis force destabilizes the 
ow and restabilizes it.Poiseuille 
ow with a Coriolis force can be seen as the thin{gap limit of theTaylor{Dean problem. The Taylor{Dean problem consists of a 
uid betweenconcentric and rotating cylinders with an azimuthal pressure gradient. Thethin{gap limit makes the gap between the cylinders in�nitesimal compared tothe radius of curvature of the inner cylinder. In this limit, the cylinders becomeplates and the 
ow between the plates is subject to an additional Coriolis force.De�ne ~U (x; y; z) = 0BBB@ U (x; y; z)V (x; y; z)W (x; y; z) 1CCCAto be the velocity of the 
ow at location (x; y; z) (see Fig. 1). De�ne P (x; y; z)to be the pressure of the 
ow. Traveling wave solutions of the Navier{Stokesequations for 
ow between parallel, tumbling plates satisfy the following:@~U@t = � Re (~U � ~r)~U +r2~U � ~rP + 2
(ẑ � ~U ) (1.1)+cy@y ~U + cz@z ~U + Fy ŷ;0 = ~r � ~U: (1.2)Here cy and cz are the wave speeds in the y and z directions, respectively; Fyis the force on the 
uid in the y direction; and 
 is the tumbling rate of theplates. The solutions of these equations are required to satisfy no-slip boundaryconditions at the plates (x = �1=2) and periodic boundary conditions in the yand z directions: ~U (�12 ; y; z) = 0; (1.3)~U (x; y + �y; z) = ~U (x; y; z); (1.4)2



P (x; y + �y; z) = P (x; y; z); (1.5)~U (x; y; z + �z) = ~U (x; y; z); (1.6)P (x; y; z + �z) = P (x; y; z): (1.7)To graph the 
ows, we introduce the wall-shear force,� (~U ) = 1�y�z Z �y0 dy Z �z0 dz dVdx (1=2; y; z): (1:8)Plane Poiseuille 
ow,~U (x; y; z) = 0BBB@ 0Fy=2(1=4� x2)0 1CCCA ; (1:9)satis�es these equations for all 
. This paper describes solutions that bifurcatefrom plane Poiseuille 
ow as 
 is varied. Plane Poiseuille 
ow refers to thesolution (1.9) above; Poiseuille 
ow refers to any solution of Eqs. (1.1){(1.7).Section 2 describes the approximation. Section 3 describes the path-followingmethods and Section 4 the eigenvalue paths. Section 5 contains the results ofthis formulation, and Section 6 discusses the results.2 Approximation of Velocity and Pressure FieldsThe solutions are expanded in terms ofCl;m;n(x; y; z) = Tl(2x) cos(m�yy + n�zz);Sl;m;n(x; y; z) = Tl(2x) sin(m�yy + n�zz);Al;m;n = (Cl;m;n + iSl;m;n) = Tl(2x)ei(m�yy+n�zz):Here, �y = 2��y and �z = 2��z are the y and z wave numbers, respectively. Eachof U; V;W; and P is approximated by �nite expansions of the formq(x; y; z) = LXl=0 MXm=�M NXn=�N ql;m;nAl;m;n(x; y; z):3



As a result, the approximated ~U and P are determined by a total of 4(L +1)(2M +1)(2N +1) coe�cients. The same notation for the approximations andthe solutions is used in this paper.These approximations do not (in general) satisfy the Navier{Stokes equa-tions. As a result, only certain projections of the Navier{Stokes equations arerequired to be zero. De�ne the inner products,< Almn; f > = Z 1=21=2 dxp1� 4x2 Z �y0 dy Z �z0 dz(Almn � f); (2.10)hei(m�yy+n�zz); fi = Z �y0 dy Z �z0 dz(ei(m�yy+n�zz)f): (2.11)De�ne ~M to be the right-hand side of Eq. (1.1). Then the approximations arerequired to satisfy the following 4(L + 1)(2M + 1)(2N + 1) equations:< Almn; ~M > = 08>>><>>>: 0 � l � L � 2;jmj � M;jnj � N (2.12)< Almn; ~r � ~U > = 08>>><>>>: 0 � l � L � 2;jmj � M;jnj � N (2.13)hei(m�yy+n�zz); ~U(�1=2; y; z)i = 08<: jmj � M;jnj � N: (2.14)Equations (2.12){(2.14) are referred to asF (u; �) = 0in the rest of this paper. The solution, u, is the set of coe�cients that determine~U and P . The parameter, �, is typically 
; Re; or �z.Since the vortical 
ows have a phase freedom in z, the following phase con-straint is imposed on the solutions:�z(u) =< C001; U (x; y; z) >= 0: (2:15)4



On the plane Poiseuille branch of solutions, the phase constraint is triviallysatis�ed, and the wave speed, cz , is unde�ned. When the phase constraint isimposed (on the vortical 
ow), it is adjoined to F (u; �) and cz is solved for, inaddition to the coe�cients u.3 Path FollowingContinuation methods are used to approximate the solution path:� = f(u; �) : F (u; �) = 0g:Distinct methods are employed to follow regular paths and to switch paths ofsolutions. In the case of regular path segments, the following algorithm is used:Step 1. Start with an initial solution, (u0; �0). Construct the Jacobian,F 0u = @F (u0;�0)@u :Step 2. Construct the initial iterate and initial parameter with one of thefollowing:� constant value continuation: �i = �i�1 + ��; u0i = ui�1, or� secant continuation: �i = �i�1 + ��;u0i = ui�1 + �i��i�1�i�1��i�2 (ui�1 � ui�2).Step 3. Compute the special Newton iterates (indexed by � = 1; 2; :::),F 0u�� = �F (u�i ;�i);u�+1i = u�i + ��i ;until jj�Ni jjl1 < �:Step 4. Set ui = uN+1i : If the parameter �i is still in the desired range and thenumber of iterations is small (e.g., N < 30), return to Step 2.5



This algorithmmay fail for several di�erent reasons. One is that the step ��is too large. In this case, decrease the step size. Another reason the algorithmmay fail is that the iterates in Step 3 converge too slowly. In this case recom-pute the Jacobian. Lastly, in the case that the solution path has trespassed abifurcation point, switch paths as described later in this section, or predict asolution on the opposite side of the bifurcation point and continue with Step 3of the algorithm above.To switch from plane Poiseuille 
ow to the vortical 
ow solution, use thefollowing algorithm:Step 1. Accurately �nd the parameter value �� at whichF �u = @F (u(��); ��)@uis singular.Step 2. Find the right null vector, �, of F �u satisfying �z(�) = 0.Step 3. Construct the initial guess for a solution on the new branch, uoi =u(��) + ��:Step 4. Compute the Newton iterates for the augmented system,0BBB@ F (u; cz; �)� � u�z(u) 1CCCA = 0BBB@ 0� � u0i0 1CCCA :The parameters cz and 
 have been freed as variables.The path of vortical 
ow is regular if the phase constraint is adjoined toF (u; �) and cz is solved for (in addition to u). As a result, the algorithm for aregular path can be used, but the augmented system of equations,H(u; cz; �) = 0@ F (u; cz; �)�z(u) 1A = 0;should be used instead of F (u; �) = 0. 6



4 Eigenvalue PathsOnce a path of solutions has been computed, it is useful to know the stabilityof these solutions. The stability is given by the eigenvalues, �; of the linearsystem, �~� = �Re(~U0 � ~r)~�� Re(~� � ~r)~U0 +r2~� � ~r�+ 2
(ẑ �~�) (4.16)+cy@y~�+ cz@z~�0 = ~r �~� (4.17)The above system is obtained from Eqs. (1.1){(1.7) by letting ~U = ~U0(�) +~�(�)e�t, P = P0(�) + �(�)e�t; and ignoring terms of order (�2). ~U0 is a solutionof Eqs. (1.1){(1.7) with @~U0@t = 0: As the solution ~U0 varies with the parameter �,the eigenvalues of the above equations, �, vary. This variation leads to paths ofeigenvalues, �(�); which are functions not only of � but also the particular pathof solutions ~U0(�). If Real(�(�))< 0 for all the eigenvalues, then the solution isstable on that path segment. In this paper, ~� is approximated in the same wayas ~U0 with the same periodicities and resolution.5 ResultsFor a �xed Reynolds number, the critical tumbling rate (i.e., the value of 
 atwhich vortical 
ow bifurcates from plane Poiseuille 
ow) varies with �z (see Fig.3). The critical 
 is minimized when �z is near 4. For a �xed wave number,the relation between Reynolds number and critical 
 is shown in Fig. 4.The branch of vortical 
ow intersects the branch of plane Poiseuille 
owat Re = 140;
c = 32:05; �z = 4:0 and again at the larger tumbling rate,
c = 56:95, as can be seen in Fig. 2. The velocity of the vortical 
ow in theplane perpendicular to the direction of forcing is shown in Fig. 7.Linear stability analysis yields the paths of eigenvalues seen in Fig. 5. Thethree branches of eigenvalues associated with the linear stability of plane Poiseuille7




ow in Fig. 5 are double eigenvalues. As can be seen from the �gure, planePoiseuille 
ow is unstable when the tumbling rate is in the range between thetwo bifurcation points. In contrast, the vortical 
ow is stable along its fullpath. (The zero eigenvalue is due to the phase freedom of the solution in the zdirection.)6 DiscussionWhile Eqs. (1.1){(1.7) (with Fy = 8;
 = 0) are known to have traveling wavesolutions for large Reynolds numbers (see [Drazin & Reid, 1981]), these 
owsvary with x and y. In contrast, the vortical 
ow (stationary waves) calculatedhere vary with x and z. The vortical 
ow is stable (at this Reynolds numberand wave number) for all values of 
 for which it exists. In contrast, planePoiseuille 
ow is stable for values of 
 for which the vortical 
ow does not exist.At larger Reynolds numbers, this picture may be more complicated as a resultof the existence of other bifurcating branches of solutions.A similar phenomenon occurs in Couette 
ow, as can be seen in Fig. 6; asolution bifurcates from Couette 
ow and rejoins at larger tumbling rates. Theseresults are obtained by the methods described in [Conley & Keller, 1995]. InCouette 
ow it is easy to compute successive bifurcations (at larger Reynoldsnumbers) to three-dimensional 
ows which exist with nontumbling plates (see[Conley & Keller, 1995]). It seems that these solutions should exist in Poiseuille
ow but would probably be traveling waves.This paper has presented analysis of the e�ect of tumbling plane shear 
ow.This tumbling rate acts to destabilize plane Poiseuille 
ow and plane Couette
ow. At higher tumbling rates the 
ows are restabilized. There is a single pathof solutions that link the bifurcation points where plane shear 
ows becomesdestabilized and restabilized. 8
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ow of an incompressible viscous 
uid between parallel in�niteplates subject to a pressure gradient is called Poiseuille 
ow. The plates aretumbling with angular velocity, 
.
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Figure 2: A path of vortical 
ows bifurcates from plane Poiseuille 
ow and thenreconnects at larger tumbling rates. Re = 140; �z = 4:0; Fy = 8; cz = 0; L =14; N = 9: 10
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 as a function of �z. Re = 600; L = 32; Fy = 8.
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Figure 4: Critical Reynolds number vs critical 
 with 32 Chebyshev polynomi-als. Fy = 8; �z = 1:96.
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'vortical 
ow''plane Poiseuille 
ow'Figure 5: The (real part of) eigenvalues resulting from the linear stability analy-sis of both plane Poiseuille 
ow and vortical 
ow are graphed here as a functionof 
. All three paths of eigenvalues of the plane Poiseuille 
ow path are doubleeigenvalues. Fy = 8; cy = 400; Re = 140; �y = 2; �z = 4; L = 14;M = 1; N = 3.
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Figure 6: Shear stress vs. 
 at Re = 85:0; �z = 3:0; �y = 1:6. This branch ofvortices shows that the two values of 
 satisfying 2
(Re�2
) = Tc correspondto bifurcation points on the same branch of vortex solutions.
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Figure 7: The projection of the velocity �eld of the vortex 
ow on the x-z plane(i.e. the y=constant plane). Fy = 8; cy = 400; Re = 600; �y = 2; �z = 4; � =�3:8202;
 = 5:6069. The bounding plates are at the top and bottom of the
ow �eld. One period of the 
ow is shown in the z direction.15


